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Abstract—The generalized conditions under which stiffened plates can be approximated as a two-
dimensional continuum are investigated and identified. A simplified set of constitutive equations
defining the full class of problems described above. subject to elastic behaviour. are then obtained
by making suitable assumptions. The significance of these assumptions ts investigated under a wide
range of conditions, and the results calculated for typical problems using the simple theory compared
with experimentally obtained values. The simple theory is then amended to allow consistently for
the effects due to Poisson’s ratio in the stifteners. A study of the resulting equations indicates that
whilst the normal assumption of centroidal neutral axes is justified under all conditions, the
additional strain energy generated in the stiffeners can be significant, and that under the assumption
of centroidal neutral axes this is readily included in Jhe formulation without penalty. Shear effects
other than those due to St Venant torsion are not constdered in the detailed analysis,

L. INTRODUCTION

The cecentrically stiffened plate subject to transverse loading is an extremely common
structural form. A full three-dimensional analysis of these members is usually avoided by
adopting a thin[H or moderately thick[2] plate theory based on the concept of smoothed
flexural, torsional, and transverse shear rigidities. However, the approximation of one
structural form by another is an expedient which incvitably raises questions of validity ; in
the present context, depending on the spacings, sizes, shapes, and orientations of the
stiffeners, some or all of the following considerations may merit special attention.

(1) The combinations of stitfener orientations for which the strain distribution through-
out the thickness of the structure can be generalized.

(2) The posstbility of distortions of the cross-scctions.

(3) The laws governing the choice of flexural and torsional properties of the “equi-
valent™ unstiffened plate.

(4) The interaction of the longitudinal direct and shear stresses in the plate (shear lag).

{5) The signilicance of the transverse shear stresses.

Factors (1) and (2) govern the viability of a 2-D approximation to the problem;
assuming these considerations elicit a positive response, then provided the stiffeners are
closely spaced (i.c. (4) insignificant), und the plan dimensions are lurge in compurison to
those associated with depth (rendering (5) a minor effect), then attention usually con-
centrates on the parameters identificd in (3), assuming the material properties permit the
“equivalent plate™ to be defined[3, 4],

The majority of authors considering these problems concentrate on the particular case
of a regular shape in plan (usually rectangular) stiffened by a rectangular grid such that
an cquivalent orthotropic plate, for which there is 2 known solution, can be identified.
Troitsky([5] summarizes the literature in this regard. In this paper we obtain an analysis
which is restricted only by the gencralized conditions under which the rigidity smoothing
process is valid ; this implics the following initial assumptions.

(a) The properties of the plate and stiffener vary gradually, and in such a manner that
the mid-surface of the plate can be considered as a flat plane with the components of direct
stress perpendicular to this plane being everywhere zero.

(b) The geometry of the stiffencrs is such that their behaviour can be described by the
generalized beam theory[6).
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In order to simplity the central arguments without unduly compromising the runge of
application of the resulting equations, the following turther (e, non-essentialy assumptions
are adopted for the purposes of the present study.

(¢) The shear centre and centroid of the stitTeners are coincident (transverse ~shear and
torsional stresses independent).

(d) Warping stresses are negligible: 1.¢. the torsional moments and especiad!s their
gradients are not large, and the geometry of the structure  sce also (fy below i3 not
conducive[7] to the generation of significant restrained warping under other foading
conditions.

{¢) The plate mid-surtuce is parallel to one principal axis of cach sutiener cross-section
stitfeners of variable cross-section must satsfy (a) above[s].

(1) The stiffened pliate section will not distort. and the torsional shear stresses i the
stiffeners and plate form independent systems (stitfeners torm an open cross-secuon with
the plate]s]. and the width of the stitfeners is not large in comparison to the depth of the
plate).

Subject to these restrictions Scction 2 tnvestigates the conditions wdentitied under (1)
for which a 2-D analysis, assuming only the stress resultants considered i classical thin
plate theory are active, 15 possible. Section 3 develops and tests the resulung gencralized
theory, The analysis s cast i variational form, thus enabling primary and sceondary
sources ol energy in both pliate and stiffeners to be considered independent!y and the results
summed algebraically to describe the overadl behaviour. Inttrally, therefore we tarther
stmphily the analysis by making two additional assumptions.

(2) Certain inconsistencies in the treatment of the strains due to Posson’s ratio do not
significantly affeet the results,
(h) Shear lag and transverse shear ellects can be ignored.

In Scctions 4 and 5 we investigate the significance of assumption (g) which embraces
approxinuibions on the position of the unstramed “surlace™ and the strain energy stored
at the stiffener intersections. These effects have been considered by Cusens ¢ al 9] however,
i the present paper we study them separately rather than concurrently, thus cnabhing the
circumstances under which cach may be signtticant o be identified. Furthermore, the
smoothing processes adopted here satisty the more generalized conditions considered
throughout this paper, and obey the Reciprocal Theorem|[3] precisely

In Scction 6 we consider briefly how the effects isolated under (h) can be incladed
the formulation. However, throughout the detaled analssis, all shear ctfects other than
those associated with St Venant torsion arc onutted.

2OTHE LIMITATIONS GOVERNING THE APPLICATION OF BENDING AND TORSIONAL
RIGIDITY SMOOTHING PROCESSES

Morley[10] has studicd the problem ol an isotropic plate subject to plane stress con-
ditions and stiffened by arbitrarily oriented scts of parallel (eecentrie) sttfeners. He con-
cludes that any anisotropic matertal subject to planc stress conditions can be modelied as
a plate strengthened by up to six sets of such stiffeners.

However, consider an isotropic plate ol constant thickness stiffened by two sets of
arbitrarily oriented sets of parallel stilfeners and subject 1o a combination of pure (i.c.
constant) bending and twist as illustrated in Fig. T Then for equtlibrium

M, =M sin” 023 sin 0 cos 0= M, cos ) th

v

M, =sin 0 cos 0 (M= M)+ M (sin” D -cos™ ). (2)

Let us take for simplicity
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e

-

Fig. 1. Plate subject to arbitrary pure bending and strengthened by two randomly oriented sets of
parallel stiffeners.

X

Fig. 2. Consideration of the equilibrium conditions on clement ABC taken tfrom the plate delineated
in Fig. 1.

M, =M, =0. 3

Then whatever the actual stress distribution throughout the plate we must have

M, = J oz, dd,; M, = J 6,2, dA, (4)
A, A,
J . dd, =0; J o,dA, =0 (5)
4, A,
o. = 0 cverywhere: t,, = 1,. = 1, = 0 on all boundarics (6)

where the terminology is defined in Fig. 2
Now under the generalized conditions being considered throughout this paper, and
defined in Section 1, the following arguments govern the validity of any smoothing process.
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da

Plan Elevation

Fig. 3. Details of the deformation of element GHIK taken from the plate of Fig. |

{a) The proportion of the total area of the problem over which the properties are
smoothed must be small enough to approximate to an element subject to constant bending
and twist such as that shown in Fig. L.

{b) The smoothing process must yicld a unique solution for equiltbrium in the original
plate when subject to constant M M, M.

{¢) The acceptance of a weighted average solution to eqns (1) -(4) permits[11] arbitrary
movements of the depth of the neutral axis[12] which in turn permits arbitrary violations
ot eqn (5). Thus bending rigiditics so derived in general contain unbounded crrors, and we
surmise therctore that the adopted smoothing process must provide an exact solution to
(b} above. Ths is equivalent to requiring that the solution process satisty the pateh test]2).

Consider theretfore the behaviour of clement ABC taken from the plate of Fig. 1. Figure 2
shows the usual lincar distribution of bending stresses throughout the full depth of the
stiffened plate, but the results are quahitatively unatfected 18 any generalized assumption
satistymg cqns (4) and (3) is substituted. Let us assume therelore that the bending stress
distributions illustrated in Fig. 2 pertain; then since the direct stresses at any depth are
constant it follows from eqn (6) that t ., t,. are everywhere zero. It now follows that the
horizontal stresses o, 0, 1, at any point in the plate (see e.g. point DEF in Fig. 2) must
form a system in equilibrium over any clemental depth dz, whenee

o

n

= ' cos™ () (7
applying egn (7) at 7 = (, b (see Fig. 2) yields
.= 0L ke To= (8 for 00#£90. ()

However. since T, is a function of the dimensions of the stiffeners in the n-direction and 7,
is not. itis clear that in general

T, # S5 forall 0. (9)

Fquations (8) and (9) are only compatible for ¢ =90 , i.c. the bending stress dis-
tributions illustrated in Fig. 2 can only exist in orthogonally reinforeed plates. The reason
for this is evident from a study of the clement GHIK taken from the plate of Fig. 1. Figure
3 shows that the ends of the stiffeners 1 -2 are twisted through an angle dx which is only
7ero when 0 = 0 or 907 ; the stresses associated with this deformation have been excluded
from the analysis above.

The more complex treatment required to take the above deformations into account
must inevitably link w ., w ., and the twisting moments, whilst simplificd methods for
assessing twisting rigidities are independent of M, and M. Furthermore, the twist generated
on the clement shown in Fig. 3 has opposite effects on faces HG, JK. Thus when two
adjacent such elements are bent together, if the faces to which the bending moments M,
are applied are not to twist (i.e. satisfy the displacement boundary conditions for pure
bending), compatibility at the common interface must induce a rippling of the plate which
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in general destroys the concept of an element of a stiffened plate subject to constant
curvature conditions.

It would seem therefore that a 2-D approximation can only be theoretically justified if
the stiffeners form a random orthogonal network with the material properties everywhere
defined by planes of material symmetry[3. 4] coincident with the stiffener orientations. due
to the difficulty in obtaining 2-D constitutive equations which satisfy either Betti's law[3]
or requirements (b) and (c¢) above in more generalized situations. The practical examples
of this class of problem include plates of arbitrary plan shape reinforced in a rectangular,
fan. or isostatic[S] manner.

3 VARIATIONAL FORMULATION OF THE SMOOTHING PROCESS

The generalized variational principle in elasticity can be written as[13, 4]
SUE )+ D (e o)+ P (1)} =0 (1)
or
MW(e, )+ Do, )+ Py, =0 ()

where U, B are the strain and complementary encrgics in the system, respectively, D the
function of independently defined strains and stresses removing the requirement that the
strains satisfy the compatibility equations, 0, the function of independently defined stresses
amd strains removing the requirement that the stresses satisfy the equilibrium equations,
and P, P, the work done by the applicd loading and prescribed displacements, respectively.

In eqns (10) and (11) all displacements (), strains (g,,), and stresses {(a,,) can be
approximated independently, whence weighted average solutions for equilibrium and com-
patibility arc obtained provided the constitutive equations can be specified. Equations (10)
and (11} are derivable from one another, and all other variational forms can be obtained
from whichever ts more convenient and applying the appropriate constraints to the field
variables. Now as only U and W are functions of the constitutive equations it is clear that
in the present context, provided we can ensure equivalence of both ¢ and W between the
actual and smoothed problems over an elemental arca of the plate, then a solution can be
obtained (provided suitable approximating functions can be found).

For the class of problem under consideration U and ¥ are normally expressed[1] as

|
U= 7J (oot +1,7,, 40,8, )dV = f O,y dV (1
- Jb ¥

-

1
W= ’J (an‘&u +‘rxy‘l’n* +G‘v‘y5n‘) d V= J' ‘P(G’u) dv ( t3)
¥ 1

where Q and ¢ arc the strain and complementary energy densities. Furthermore, for lincar
clasticity. from Clapyron’s theorem(3] U = W whence

{o} =[D}{e}: (e} =[Cl{o}: [D]=([C]"' (14

and thus attention can be focused on U or W, whichever is more convenient.

For plastic (and non-lincar clastic) applications eqns (10)-(13) must be written in
incremental form and the constitutive equations may not possess a unique inverse ; never-
theless the problem can be linearized over an appropriately small increment of load and U,
dWevaluated[13. 15]. However, limiting attention to lincar elastic orthotropic behaviour for
simplicity, we have[4] for the non-zero elements of [D]
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X
Fig. 4. Arbitrary orthegonally stiffened plate with the directions of the stiffeners everywhere coinci-
dent with the curvilinear coordinates 2. .
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Fig, 8. Section f# fthrougl the plate of Fig, 3 showing dimensions and basic assumplions concerning
the strain and stress distribution in the a-direction,
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Eguations (14) and (15) relate the components of stress and strain defined in a system
of curvilinear coordinautes (%, ff) in the plane of the plate which are everywhere coincident
with the directions of geometric and material orthogonality {see Fig. 4). Then taking into
account egns (4), since energy is a scalar quantity we can write the strain energy density in
the stiffened plate as

Qi=p)=0"+Q+ (16)

where

i

Q

LAL, W g

il

strain energy/unit area of plate at point § an

Q) =Ql Q= {Mwl+Miw.]

= strain encrgy/unit arca of plate in cach set of stiffencrs at point § (18)

where A, M, arc the bending and torsional moments in a stiffener per unit arca of plate.

In order to simplify the solution, we now make «. ff coincide with the appropriate
ncutral axes of the whole section at point 4, Then from Figs S and 6 and Refs [1, 5, 10]
(note also the experimental evidence in support of the assumption of independent shear
stress systems in the plate and stiffeners given in Ref. [9]), the striins and moments of the
stresses in the plate about the neutral axes at the point are given by
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Fig 6 Section 2 2 through the plate of Fig. 4 showing dimensions and basic assumptions concerning
the strain and stress distribution in the f-direction.

£, ::(:—?-'(’x)kt'.“: i‘v{‘:, =j (D”ﬁ,-i-D;gS,;)(:-i"(’,) d:
(19

My J (D64 Daaep) (z+ey) dz L
ot

It

Ep = AW

e 2

r o

m W el Moy = j 3 B\ b
.o
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and in the stiffeners (7= 1. )

Db, [ G
a =l f grdzs ML= Tdw ., (20)
_/] o2ed vf[
where 77, is as detined in Rell [12].
Substituting cgns (173 (20) into eygn (16) yields
h

[ N Mt ¥
Q= o) 1D I

o

wher

LIS vE oL . i N . H ;
Wy = W Wy “‘;,;g:‘ at pOln{l

(D) =D+ D+ D;ml

- f: . {3 e
DH(}E +f'{> D”(il "}”"x"/;) 0

\

i e r s
f),,; = I);z(tj +1'xf:/f) i)_‘)(fq +L‘I.) {) :

0 Py

)

0 0 DT,

define the contributions of the plate and stiffeners in the x-direction. respectively, D4, can
be deduced by permutation, and the prime is a reminder that the (smoothed with respect
to depth) obtained values are not necessarily moment curvature relationships{11]. the
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Boundary conditions
ALLBC - simply supported
AB,CD - unsupported

Loading
unit point load at £

Stiffener centre
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(0.0} L {900.0} X
¥

Fig. 7. Plan dimensions and boundary conditions of the trapezoidal plate ABCD vonsidered in
Scction 3. All dimensions in mm.

stresses in the plate and stiffeners are related to the curvatures through eqns (19), (14),
and (15).

Now jw ) transforms as a second-order Cartestan tensor[16], i.c.

{“’.1{1 : = [‘;'] : "Y.\r } (22)
where
cos® 0 sin® 2 sin B eos 0
[ = sin® 0 cos® 0 —2cos O sin 0

.—sinfcos # sinficost cos’lO—sin’ 0

and ¢ is defined as shown in Fig. 4.
Equations (21) and (22) enable the evaluation of egns (12) and (13) by identification
of the generalized stress-strain relationship

(M} = D) D5+ Dl + Dol ] ) (23)

To demonstrate the utilization of this general expression we present the results (in
Newton, millimetre units) obtained for two perspex (E = 3774 N mm v = 0.35) plates
using different methods.

Figures 7 and 8 show a plate ABCD, of symmetrical trapezoidal shape in plan, subject
to a unit central point load. This problem is suitable for initial consideration duc to the
regular geometry of the plate, and the fact that the loading and boundary conditions
are capable of being simulated with acceptable accuracy in the luboratory. Furthermore,
although the twisting moments exhibit theoretical singular behaviour at the corners{10].
the contributions of these singularitics to the solution have been minimized by considering
loading which generates a simall amount of strain energy in these regions, and the theoretical
solutions presented assume a single valued solution for the corner twisting moments.

The Rayleigh-Ritz results presented in Fig. 9 have been obtained using a solution
process{11] based on egqn (10) with the constraint that da,;, = 0. Since a straightforward
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Fig. 8. Details of the stiffener dimensions for the plate illustrated in Fig. 7. All dimensions in mm.
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{c}
Fig. 9. Results obtained for the problem delineated in Figs 7 and 8. All values are in Newton
millimetre units: (u) M, on F-G: (b) M, on A-B; (¢} deflection on F-G. ——, Rayleigh -Ritz; @,
finite clement ; A, experimental result.

Rayleigh-Ritz approximation results in all defined field variable derivatives being explicitly
prescribed continuous, the remedial action specified in Ref. [11] has been implemented to
simulite the anticipated singularity in bending moments under the point load. The com-
parative finite element results have been obtained using a solution based on Reissner’s form
of eyn (11) (i.e. requiring the inverse of eqn (23)) which awards piecewise continuity to the
bending moments, a finite weighting towards continuity of M, and M, , but not M, and
M, . and independent lincar and quadratic approximations to the moments and dis-
placements within cach element, respectively. The process is therefore able to interpret this
problem as the limiting case of a continuous one in a manner very similar to the classical
analysis provided a sufficiently fine mesh is used, and no specific allowance for the singular
behaviour of M, and M, under the point load has been made. Both sets of theoretical
results agree with those obtained experimentally to within the error bounds on the latter.
The plate WXYZ illustrated in Figs 10 and 11 tests the theory under significantly
different (and more generalized) conditions of geometry and loading, and has the additional
advantage that there is no singular behaviour of the field variables. The Rayleigh-Ritz
results presented in Fig. 12 were obtained using Simpson’s rule with 11 integrating points
in each direction, and with the generalized stress-strain relationship of eqn (23) re-evaluated
at each integration point. The finite element results were obtained using a regular 8 x 6
mesh of bisected quadrilaterals with eqn (23) assumed constant within each element and

SAS I4:1-G
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Boundary conditions
Al external boundaries fully
clamped fie. w=w, =0
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Fig. 10, Plan dimensions and boundary conditions of the plite WXYZ considered in Section 3,
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Frg. 12 Results obtinned for the problenm tusteated in Figs 10 and 1A values are o Newton
nullimetee units: (ad deflectionon A Bothy M, on A B, Ravleigh Rtz @ Binte clement,

evaluated at the element centroids. These results demonstrate the numerical stability of the
smoothing process on a typical stiffening pattern of practical signilicunce covered by the
generilized theory; no experimental results are available for this problem,

In view of the complexity of these problems, and the refatively weak weighted averages
sought for the displacements through Reissner’s principle[17] these results demonstrate the
stability of the numerical process advocated here for the implementation of egn (23) subject
to the limitations obtained in Scction 2.

4. AMENDED THEORY TO ALLOW FOR THE EFFECT OF THE STRAINS DUE TO
POISSON'S RATIO ON TIHE POSITION OF THE NEUTRAL AXIS

In the previous analysis the neutral axes were located on the assumption that the
bending stresses in the directions parallel to the stiffeners were independent. Simultancously
the bending moments were caleulated including the effects of v in the plate, thus destroying
to an undetermined extent equilibrium in the planc of the plate. In the present analysis the
ncutral axes are defined as those of zero total strain in the z- and fi-directions, and allowed
to locate themsclves so that equilibrium is restored. We shall continue to ignore the effect
of v in the stiffencers on the calculations, but note that the results demonstrate this is not
important,

On the above basis it is possible to proceed assuming that all the information given in
Figs 5 and 6 still pertains, but allow the neutral axes to locate themselves so that (if possible)
a state of purce bending is obtained. In the z-dircction, assuming the neutral axis (NA)
oceurs in the stiffener
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Fig. 13. Section - over a length equivalent to the local stiffener spacing : neutral and centroidal
axes not necessarily coincident.
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;\',J . ot d:+h,J , al d:+h,j o, d:=0. (24)

-1 2 -1t 24+dy) -,

Since the essential argument of this section is unaffected qualitatively by the degree of
material orthotropy, it is convenient (for the purposes of clarity) to consider only isotropic
behaviour with

Eﬂ = EM‘ =L Vag = Vi =V (25)

substituting eqns (19a). (15). and (25) into eqn (24), carrying out the appropriate integration,
making the approximation that (1 —v%) = [, and rearranging yields

AL
Fo—vpey (26)
A,

¢, =

(the same result is obtained if NA s assumed to occur in the plate) where A, is the arca of
the full section illustrated in Fig. 13, A% the arca of the stiffener illustrated in Fig, 13, A}
the arca of the plate iltustrated in Fig. 13, 7, the distance from the mid-depth of the plate
to the centroid of the stiffened section and

P=Woap/w o,
summing the horizontal forces in the fi-direction yiclds

v A,',
e, " 27N
po Ay (

where the terminology used in eqn (27) follows from that used in egn (26). Substituting cyn
(27) into egn (26) and ignoring terms in v? yiclds
- A:) A;;
=
GERTI 4 4,

or, substituting

P . -
A+ Ay e, =e,—F,

, - A,
(,1 = vp,“l‘( l - ’-A‘)
A,

where ¢} is the distance from the centroid to NA as shown in Fig. 13. Clearly a similar
cxpression can be obtained for ¢j. From eqn (28) we deduce the following.

\
A
“

It

(28)

(1) e;. ey are totally dependent on v, and thus if effects due to Poisson’s ratio are
considered negligible ¢, e =01 ¢, = F,: 5 = §;.
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Fig. 14, Strains induced in a singly stiffened plate by application of (a) My, and (b) M, in turn.

(2} Equation (28) is u separable function of the displaced shape and plate dimensions,
and cach effect can therefore be discussed separately.

(3) The geometrical configuration which maximizes ¢, is large and closcly spaced
stiffeners in the fi-direction, and no stiffeners in the a-direction. Indeed, Fig. 14 clearly
shows that as 7, decreases and §, increases, a situation is always reached at which v can
move NA totally outside the section for certain moment combinations. Consequently we
surmise that in general, the application of transverse loading to a stiffencd plute generates
a condition of combined bending and axial stress of the type

Q= {'A/[i/w‘i}"’—%ﬁxi (29)

where both i.7 = 2, fin turn, F,is the resultant axial force/unit width, and «, the generalized
strain against which 7, does work.

{(4) Cusens er al[9] obtained very poor correlation between experimentally and theore-
tically determined estimates of the traditionally defined bending rigidities (cf. Scction 3),
about the weaker principal axis, for the situation illustrated in Fig. 14, The argument of
(3) above shows that this is because the assumption of centroidal neutral axes s most in
crror under these conditions. However, this may not be a significant source of error in
practical stiffenced plate theory applications, as these generally fall into two categories.

(1) Predominantly singly spanning plates (in say the f-direction), with M, generally
significantly less than M, for efficiency such plates are only stiffened about the ff-ff axis,
thus

¢; >0 but M,=0;, U, =U,.

(b) Doubly spanning plates, i.c. M,,, Mz are of the same order ; such plates are usually
stiffened in both directions, thus

My My >0 but e,ey=0, U =U,

where U, U, are the theoretical strain energies in the stiffened plate with centroidal and
fully consistent ncutral axes, respectively.

Clearly, therefore, an upper bound on the effect of v on the location of the neutral axes
can be obtained by re-analysing the doubly spanning, singly reinforced quadrilateral plate
considered in Scction 3, but this time using the constitutive equations defined by eqn (29).

Rather than attempt to formulate eqn (29) directly, it is more convenient to note that
eqn (21) was effectively obtained by evaluating the work done per unit area of the plate by
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Table [ {llustrating the effect on the plate delineated in Figs 10 and 11 of substituting fully consistent for centroidal

neutral axes

Support conditions Theoretical results at centre of plate (N, mm units)

(restrained values) Section 3 Section 4
WZ XY WX.ZY w M, =M, M, w M, =M, M,
1 w none 20.4 660 pL) 20.1 652 30
2 wiw, none 4.05 229 15 393 223 14
3 w w 8.10 3t 135 7.98 306 {33
4 wWiw, w 34t 206 61 331 201 62
5 woW, oW, 218 134 59 1.93 it4 47

the strains against the stresses for arbitrary e,. ¢;. The analyses of Section 3 were then
carried out by putting

e:=fa; €3=_9g.

It therefore follows that eqn (29) can be re-expressed in the form of eqn (21) with e,. ¢;
derived through eqns (26) and (27). The solution to any given problem can then be sought
by obtaining an initial solution assuming p = 0, re-evaluating p., and repeating the analysis
until convergenee is achicved.

Table 1 indicates the effect of using fully consistent neutral axes on the chosen plate
using several different modes of support. In accordance with (a) and (b) above, using the
support conditions for which this stiffening arrangement is efficient (analyses 1 and 2) the
difference between the results obtained using the centroidal and consistent theories is
minimal. Using the boundary restraints considered in analyses 4 and 5, cerrors of 3 and
11.5%, respectively, are obtained from the centroidal theory.

These results show that provided a plate is stiffened reasonably ctficiently, negligible
error will be induced by assuming centroidal neutral axes.

All the analyses summarized in Table | converged within three iterations ; however,
the equations are unstable when p == 0, and the above results were obtained by putting
W = 0ilp <01

5. ALLOWANCE FOR THE WORK DONE IN THE STIFFENERS DUE TO POISSON'S RATIO

Consider a small clement of a plate subject to the restrictions under consideration in
this paper, and the dimensions of which are defined by the terminology of Figs S and 6.
Figurc 15 shows such an element subject to biaxial tension in the principal directions of
orthotropy. Over the volume b,byd,, (where d,, is the lesser of d,, dj) the work done by the
strains due to Poisson’s ratio in the stiffeners is given by

ot
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Fig. I5. Plan view of a typical element of a doubly stiffened plate subject to plane stress with ¢, > 4.
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ST - -
UM = — b byd, (V6,0 + vy, 840,).

Thus for a plate in bending with ¢,. ¢, varying lincarly with depth as illustrated in Figs 5
and 6. U can be re-expressed in terms of the locally smoothed energy density. given by

QY= - (Va0 + Vya840,) dz. (30)

In addition the direct stresses in the stitfeners are now related to the stiffener strains by
eqns (135) over the volume of stiffener overlap. Thus Q now becomes

E (h,df ) b, by
Q= {5 +/',d,/l;) < - i)
1. 12 _//{(I_"~) _//1 (
and similarly for Q/.

The omission of these modifications to eqn (16) is acceptable if the volume of stiffener
overlap is small in comparison with the total volume of the stitfened plate. However, as the
slab thickens and stttener spacings are decreased, so the stiffeners tend to dominate the
behaviour, and significant creors in the strain encrgy density can be anticipated under these
circumstances.

Since the effect of v, and vy, on the movement on the neutral axes is minimized when
the cffect under the present discussion is a maximum (and vice versa), it is always pernussible
to allow for the latter by re-writing egn (16) as

Q= QU +Q + Q"+ Q. (32)

Substituting eqns (15) and (19a) into cqn (30}, carrying out the integration and sub-
stituting this result and eqn (31 into eqn (32) yields (¢, eqn (21))

Q = 3w (D] 1w (33)

where [D7] = [D7] except that D[, 1], D7[2, 2] are modified according to eqn (31) and
D[L2] = D72, 1) = DL, 2]+ D%,

with

. Db, ! 1 d; d,
Dy = 1.1 dul exey— Jecteg)+ a4l [t—(e.+ep)]+ 3

Figure 16 shows the central displacements obtained defining the strain energy densily
by both cqns (21) and (33) for a simply supported square perspex plate (side length, 1000
mm ; thickness, § mm; loading, 0.01 N mm ) stiflened by a regular grillage of bearms
20 mm deep. SO mm spacing, and widths varying from 10 to 30 mm. Also considered is a
25 mm thick unstiffened perspex plate of identical plan dimensions and subject to the same
loading. The result so obtained is slightly smaller than by using eqn (33) to define the S mm
plate with 50 mm wide stiffeners at 50 mm spacings. This is because the torsional stiffness
of the latter is reduced by the 50 mm squarc grillage of 20 mm deep cuts. However, all
other terms in the moment curvature relationships are identical for both plates.

Equations (21)assume that the strains due to v in the stitfeners occur without generating
any stresses. For the plate and stiffener configurations considered in Fig. 16 this leads to
results between 6 and 19% overflexible; similar discrepancies are obtained for the stresses.
For practical applications it would appear therefore. that the use of eqns (33) in place of
eqns (21) can eliminate significant errors without penalty.
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b = U from Eqn {21}
s U from Eqn {33}
* 23mm thick isotropic piste
3I5-
0L
25}
201Lk
Wimm}
15+
10k
s}
0 N R N o .
o] 10 20 30 40 50

bimm)

Fig. 16. Typical results obtained for the example problem considered in Section 5.

6. CONCLUSIONS

(1) The generalived conditions under which a 2-D analysis for thin (1. plan dimension:
large in comparison to the cross-sectional ones) stiffened plates can be formulated are a
obtained in Scctions 1 and 2.

{2) A simple analysis assuming centroidal neatral axes resulting in an casily utilizec
set of generalized constitutive equations has been presented in Sections 3 and 5 tor a clas:
ol stitfened plates which includes the vast majority of practical applications of stilfenec
plate theory,

The analysis can be reworked to include effects (¢} (U} identified in Seetion 1 using
established theory should they be considered significant in a given application. It was
similurly considered that the conditions under which cffects (h) are significant do not
pertain.

If the stiffeners are widely spaced shear lag can be allowed for by assuming the shear
strains arce negligible and forming the cnergy in the system in terms of an additional
piarameter which cnables the depth of the neutral axis to vary in such a manner that the
shear Tug equations[ 18, 19] are satisfied. If the stiffeners are of such a depth that the stiffened
plate becomes moderately thick, the transverse shear stresses in the stiffeners can be simu-
lated using an additional parameter which allows the stiffener cross-sections to rotate with
respect to one another{2, 15].

(3) The assumption of centroidal neutral axes has, in Scction 4, been shown to be
sufliciently accurate under arbitrary conditions for cngineering purposes ; it has also been
shown that for cfficient stiffening patterns, the error so induced is negligible. However, the
stresses generated in the stiffeners due to Poisson's ratio, which are also normally ignored,
may be significant. In Section S it hus been shown how these stresses can readily be taken
into account,
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